Researchers demonstrated the success of a fully implantable wireless medical device called a Stentrode Brain-Computer Interface designed to improve functional independence in patients with severe paralysis in an abstract presented recently at the Society of NeuroInterventional Surgery‘s (SNIS) 17th Annual Meeting.

The study, “Motor Neuroprosthesis Implanted using Cerebral Venography Improves Activities of Daily Living in Severe Paralysis,” is reportedly the first-in-human examination of the stentrode, an implantable brain- computer interface, conducted at The Royal Melbourne Hospital. The first patient to receive the device was a 75-year-old man with severe paralysis due to amyotrophic lateral sclerosis (ALS), who was totally dependent on his wife for care.

“The implantation procedure combined functional MRI coregistration with angiography to precisely place the stentrode over the motor cortex.”

— Professor Peter Mitchell, principal investigator and leader of the operative team

Independence Increased After Implantation

Following implantation of the device, the patient increased independence and could perform essential activities, such as text messaging, online shopping and managing his finances, according to a media release from the Society of NeuroInterventional Surgery.

“The results in this first human trial show promise that this device may restore voluntary motor function of personal computers and devices for patients with severe paralysis due to brain, spinal cord, peripheral nerve or muscle dysfunction. We need to conduct additional research to confirm our preliminary results and prove the validity of this ground-breaking technology.”

— Dr Thomas Oxley, lead author of the study and Associate Professor in the Vascular Bionics Laboratory at the University of Melbourne

The stentrode brain-computer interface is designed to translate brain activity associated with attempted movements and digitally convert thoughts into command functions of external devices.

According to the researchers, the data suggests the successful control of devices that improve instrumental activities of daily living.

[Source(s): Society of NeuroInterventional Surgery, EurekAlert]


Related Content:
Stentrode Brain-Computer Interface Implanted Successfully for the First Time
Thought-to-Text Technology Begins Clinical Trials
Florida Passes Legislation That Aims to Help Improve Stroke Outcomes